Расширяющие добавки для повышения долговечности конструкций
Большое разнообразие строительных сооружений, различие условий их возведения и эксплуатации, а также необходимость повышения долговечности этих сооружений сделали актуальной проблему создания специальных вяжущих и бетонов на их основе.
В 70-х годах XX века в НИИЖБ разработаны напрягающие бетоны и бетоны с компенсированной усадкой, обеспечивающие конструкциям на их основе повышенную водонепроницаемость, морозо- и трещиностойкость, для применения в различных областях строительства. Такие бетоны создаются на основе портландцемента (ПЦ) и расширяющих добавок (РД), которые могут быть получены как по обжиговой, так и по безобжиговой технологии с применением различных отходов промышленных производств. Среди многочисленных запатентованных в России добавок особый интерес представляют алюминатно-сульфатные и алюмооксидные добавки, а также разные их комбинации, свойства которых определяются условиями гидратации и твердения алюминатов и сульфоалюминатов кальция, а также их соединений с силикатами и сульфатами.
В качестве сырья для получения таких добавок могут быть использованы природные материалы и промышленные отходы. Особый интерес представляет утилизация крупнотоннажных отходов, которая позволяет решать проблемы охраны окружающей среды и ресурсосбережения в строительстве.
Эти добавки вводят в мельницу при производстве цементов или в бетоносмеситель при приготовлении бетонной смеси.
Введение расширяющей добавки в процессе приготовления бетонной смеси регулирует энергию расширения вяжущего, что позволяет получать бетоны для сборного и монолитного строительства, как с компенсированной усадкой, так и напрягающие с различной энергией самонапряжения, обеспечивая высокое качество изделий.
Как известно [см. Кузнецова Т.В. Алюминатные и сульфоалюминатные цементы. М.: Стройиздат, 1986], в основе расширения бетонов с использованием РД лежит то же явление, что и при коррозии III вида [см. Москвин В.М. Коррозия бетона. М.: Госстройиздат, 1952; Михайлов В.В., Рубецкая Т.В., Титова Л.А. К вопросу о сульфатостойкости бетона на напрягающем цементе // Бетон и железобетон. 1974, № 3], т.е. наличие растягивающих усилий, возникающих в порах бетона в результате увеличения объема кристаллизующихся солей или замерзания воды.
При этом явления, которые происходят во время сульфатной коррозии, аналогичны процессам расширения взаимодействия алюмо- и сульфатсодержащих материалов, т.е. образованию гидросульфоалюмината кальция (ГСАК) в первые сутки параллельно с гидратацией. В этот период структура бетона склонна к пластическим деформациям, и образование ГСАК не приводит к ее разрушению.
Следует отметить, что при применении напрягающих бетонов или бетонов с компенсированной усадкой в конструкциях необходимое ограничение деформации расширения бетонов достигается путем использования арматуры или торцевого ограничения. При этом возникающие растягивающие усилия от образования ГСАК не только не опасны, но и способствуют созданию плотной и прочной структуры за счет обжатия бетона. Кроме того, кристаллы ГСАК в порах и на поверхности новообразований как бы дисперсно армируют цементный камень. Для оценки связывания основных компонентов ГСАК были проведены комплексные физико-химические исследования кинетики процессов гидратации различных вяжущих, результаты которых приведены в таблице 1.
Таблица 1 Кинетика связывания воды, SO3 и кристаллизации эттрингита
Вяжущее в бетоне |
Возраст |
Содержание связанной воды, % |
Содержание несвязанного SO3 (непрокаленное вещество), % |
Содержание, % |
|
связан-ного SO3 |
эттрин-гита |
||||
ПЦ |
Сухая смесь |
1,35 |
2,22 |
– |
– |
1 сут. |
10,56 |
1,00 |
1,22 |
6,38 |
|
28 сут. |
15,81 |
0,42 |
1,80 |
9,41 |
|
ПЦ + РДН |
Сухая смесь |
2,20 |
3,90 |
– |
– |
1 ч |
5,37 |
2,52 |
1,30 |
7,21 |
|
3 ч |
5,41 |
2,41 |
1,30 |
7,84 |
|
1 сут. |
8,80 |
1,83 |
1,53 |
10,98 |
|
7 сут. |
13,16 |
0,29 |
3,60 |
18,82 |
|
28 сут. |
17,67 |
0,20 |
3,65 |
19,35 |
|
ПЦ + РДК |
Сухая смесь |
2,10 |
3,73 |
– |
– |
1 ч |
5,60 |
2,12 |
1,61 |
8,42 |
|
3 ч |
5,75 |
2,10 |
1,63 |
8,57 |
|
1 сут. |
9,80 |
1,22 |
2,51 |
13,12 |
|
7 сут. |
14,75 |
0,33 |
3,40 |
17,81 |
|
28 сут. |
17,76 |
– |
3,70 |
19,51 |
Из данных таблицы 1 видно, что в бетонах на основе ПЦ и РД сразу после затворения их водой на поверхности цементных частиц образуются гелеобразные продукты гидратации, и уже в первые часы появляются крупные кристаллические новообразования ГСАК игольчатой формы, которые, переплетаясь, дополнительно связывают между собой частицы цемента.
Содержание соли (эттрингита), как в возрасте 1 суток, так и 28, в составах на основе ПЦ и РД в 2 с лишним раза больше, чем у аналогичных бетонов на ПЦ, в то время как гипс практически весь связывается уже к 7 суткам. Все это создает необходимые условия для получения прочной и плотной структуры бетона.
При длительном агрессивном воздействии внешней среды за счет оставшихся алюминатов может образоваться некоторое количество кристаллизующихся солей (эттрингит, хлоралюминат и др.). Это, в свою очередь, является дополнительным источником расширения бетона и в условиях ограничения деформаций (даже в уже сформировавшейся структуре материала) не представляет опасности, вызывая лишь дополнительное напряжение в арматуре [см. Михайлов В.В., Рубецкая Т.В., Титова Л.А. К вопросу о сульфатостойкости бетона на напрягающем цементе // Бетон и железобетон. 1974, № 3]. Благодаря повышенному дополнительному армированию цементного камня кристаллизующимися солями при введении расширяющих добавок изменяется пористость и повышается плотность бетона.
Стойкость бетона на многокомпонентном вяжущем (ПЦ + РД) в значительной степени определяется его водонепроницаемостью и морозостойкостью.
Таблица 2 Эксплуатационные характеристики бетонов с компенсированной усадкой
Бетон |
Состав бетона |
Морозо-стойкость (число циклов) |
Прочность, кгс/м2 (сжатие / изгиб) |
Марка по водо-непроницаемости W |
|
вяжущее, кг/м3 |
Ц/В |
||||
Обычный (на ПЦ) |
400 470 |
1,99 2,53 |
270 300 |
370 / 63 486 / 68,5 |
6 8 |
Напрягающий |
400 470 |
2,31 2,47 |
300 500 |
485 / 68,7 |
12 16 |
С компенсированной усадкой |
400 470 |
2,0 2,35 |
500 600 |
647 / 73 715 / 89,3 |
14 18 |
Как видно из таблицы 2, применение в составе бетона вяжущего на основе ПЦ и РД позволяет улучшить эксплуатационные характеристики бетонов. При одном и том же расходе вяжущего введение расширяющих добавок в состав бетона значительно увеличивает прочность, как при сжатии, так и при изгибе, а также повышает морозостойкость и водонепроницаемость.
Такие свойства многокомпонентного вяжущего, как плотная структура и непроницаемость бетонов на его основе, а также трещиностойкость самонапряженного железобетона в сочетании с высокими прочностными показателями, особенно при воздействии изгибающих и растягивающих усилий, обусловливают эффективность применения вяжущего в бетонах разнообразных конструкций (бесшовных полах промышленных зданий, емкостях различного назначения, спортивных сооружениях и т.п.).
Покрытия полов промзданий, спортивных и других сооружений, представляющие собой относительно тонкий слой, выполняются либо по бетонному основанию на грунте, либо по железобетонному перекрытию.
Помимо специальных требований по стойкости к износу, ударным и агрессивным воздействиям, электризации, беспыльности и т.п., к бетонным полам предъявляются требования по трещиностойкости и водонепроницаемости.
Трещиностойкость бетонных покрытий при воздействии усадочных температурных факторов и внешней нагрузки определяется жесткостью основания, сцеплением с ним и в основном его деформативностью без образования трещин.
Небольшая предельная растяжимость обычного бетона вызывает необходимость устройства деформационных швов в бетонных покрытиях с определенным шагом в зависимости от возможных температурных и влажностных перепадов. Специальная изоляция в виде ковра из рулонных материалов (или иным способом) обеспечивает водонепроницаемость бетонных полов. При введении полимерных и других добавок улучшаются ударная вязкость и водонепроницаемость бетона в полах, что, однако, отрицательно сказывается на других показателях.
Повысить трещиностойкость и обеспечить водонепроницаемость покрытий полов можно путем использования бетонов с компенсированной усадкой или напрягающих. Трещиностойкость покрытия обусловливается преднапряжением, которое достигается как в полностью бетонном с компенсированной усадкой покрытии, так и в бетонном, ограниченном по периметру обвязкой, воспринимающей расширение покрытия.
Преднапряжение может быть рассчитано в зависимости от активности РД, состава бетона, степени и характера армирования либо упругой податливости обвязки.
Наиболее эффективным является применение таких бетонов для полов промзданий и гаражей без оклеечной гидроизоляции, что позволяет получить бесшовную конструкцию пола, исключив основную долю усадки в период расширения и связанных с этим растягивающих напряжений. Кроме того, при наличии арматуры РД создает самонапряжение конструкции, а также имеет более высокую прочность на растяжение при изгибе, позволяющую дополнительно уменьшить сечение конструкции пола (особенно при совмещении покрытия с подстилающим слоем).
В 1992 году на мясокомбинате «КампоМос» были возведены 2000 м2 декоративного покрытия пола, которые эксплуатируются уже более 10 лет без капитального ремонта. Необходимо отметить, что в цехах мясомолочной промышленности бетонные полы находятся в специфических условиях: на них систематически попадают компоненты, агрессивные к бетону. Поэтому для обеспечения долговечности покрытий при их устройстве обычно в бетон вводят биоцидные добавки. Введение одной только комплексной расширяющей добавки (без биодобавок) позволяет получить конструкцию требуемой долговечности.
Проведенные исследования и опыт эксплуатации полов в цехах изготовления мясопродуктов, убойных цехах и холодильниках позволяют рекомендовать бетоны с компенсированной усадкой на портландцементе с расширяющей добавкой для массового применения.
В настоящее время возведено более 20 000 м2 покрытий полов на мясоперерабатывающих комбинатах Москвы: «КампоМос», «Микомс», «Лианозово», «Велком» и др.
В НИИЖБ разработана техническая документация на расширяющую добавку, напрягающий цемент и бетоны, напрягающие и с компенсированной усадкой. По требованию заинтересованных организаций разрабатываются рекомендации по применению таких бетонов для каждого конкретного случая, и поставляется необходимое количество добавки.